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Abstract

The energy dissipation performance of machine augmented composite materials is investigated. Machine augmented

composites are simple machines in a matrix. Fluid-filled tubes are used as machines; the tube cross-sectional geometry

induces fluid flow when deformed. This flow dissipates mechanical energy and provides the composite material with

attractive damping properties. Time accurate, three-dimensional finite element models are used to predict the performance

of these damping materials with zero pressure at the ends of the tubes. Particular attention is given to dimensionless

parameters that govern the energy dissipation efficiency of a machine-augmented lamina. An important dimensionless

parameter is the ratio of solid elastic moduli to the product of the driving frequency and the fluid dynamic viscosity. For

the geometry, the material properties, and the loading type considered the highest single-cycle efficiency predicted by these

models is approximately 0.8 out of a maximum of 1.0.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The machine-augmented composite is a new material class, introduced first by Hawkins [1]. In these
materials conventional fiber and particulate reinforcements are replaced or supplemented by embedded simple
machines. The machines may take on many different forms and serve to modify power, force, or motion in
different ways. Also, a given composite lamina may contain multiple types of simple machines. Alternatively,
different lamina, each containing only one type of simple machine, may be stacked to form hybrid composite
laminates. This versatility aids in the development of composite materials that possess multifunctional
properties.

Machine-augmented materials that exhibit good damping performance are desired. The proposed method
of development is the insertion of simple machines, which take the form of long tubes filled with viscous fluid,
into a matrix. The tube cross-sectional geometry induces fluid flow when deformed in its plane. The use of
incompressible or nearly incompressible matrix material ensures that any volume change in a machine-
augmented lamina is primarily due to a change in volume of the tube cavity where the fluid is contained. This
results in an efficient displacement of fluid for a given strain in the lamina. The loading considered here is a
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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uniform, through-the-thickness compression that is a sinusoidal function of time. In this study a single tube
centered in a matrix cell, referred to as a tube/matrix cell, is a representative volume element for a machine-
augmented lamina. This study combines dimensional analysis with finite element method to determine
fundamental physical parameters of the machine-augmented composite. This combination of analysis can
provide guidance for future physical testing.
2. Insights from dimensional analysis of a tube/matrix cell

Dimensional analysis is attractive because it reduces the number of variables in a dimensionally
homogenous equation by condensing the original dimensional variables into a smaller set of dimensionless
variables. These dimensionless variables can often give insight into the physics involved in a particular
problem and are called Pi terms. Any problem contains a certain number of reference dimensions. For
example, the reference dimensions may be mass, length, and time. Buckingham’s Pi theorem states that a
dimensionally homogenous equation involving k variables may become a relationship among k minus n

independent dimensionless products. The parameter n is the number of reference dimensions present among
the variables in the original equation. The only requirements on the new variables are that they are
independent, dimensionless, and correct in number [2].

In this work the energy dissipation efficiency of a machine-augmented material is the ratio of the change in
total mechanical energy dissipated (OD) to the change in total work input (OI) during a steady-state cycle. For
a damping machine-augmented material subjected to an applied displacement boundary condition that is a
sinusoidal function of time, OD and OI are assumed to be functions of several variables. These variables are:
the fluid density (rf), the density (ri) of solid material i, the fluid dynamic viscosity (m), the modulus of
elasticity (Ei) of solid material i, the Poisson’s ratio (ni) of solid material i, the height (H) of the tube/matrix
cell, the width (W) of the tube matrix/cell, additional cross-sectional dimensions (lj), the length (LT) of the
tube/matrix cell, the amplitude (A) of the applied displacement boundary condition that varies between zero
and twice the amplitude, the driving frequency (o), and time (t). The fluid velocity (V) and pressure (P) at any
chosen location within the tube cavity may be expressed as functions of these independent variables as well.
Here the index i ranges from 1 to the number of solid constituents present in the machine augmented
composite lamina. For example, if two solid constituents are present then OD, OI, V, and P are functions of r1,
r2, E1, E2, n1, and n2. The index j ranges from 3 to the minimum number of dimensions required to completely
describe the tube/matrix cell cross-sectional geometry. The actual number of cross-sectional dimensions that
are necessary increases with the complexity of the geometry considered.

The variable set contains three reference dimensions: mass (M), length (L), and time (T). Table 1 lists the
dimensionality of the variables involved. One possible result from the non-dimensionalization of OD by
application of Buckingham’s Pi theorem is this equation:
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Since the Poisson’s ratio is dimensionless it is a valid Pi term. This is not the only possible set of
dimensionless variables. Other equally correct dimensionless variable sets are possible. Similarly, one possible
result from the non-dimensionalization of OI is this equation:
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Dimensionless expressions may also be formed from equations representing the fluid velocity and pressure
at any chosen location within the tube cavity. An expression resulting from the non-dimensionalization of the
pressure is given by this relationship:
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Table 1

Dimensional variables and their dimensions

Variables Definition Dimensions

OD Dissipated mechanical energy ML2T�2

OI Work input ML2T�2

P Pressure ML�1T�2

V Velocity in length direction LT�1

rf Density of fluid ML�3

ri Density of solid material i ML�3

m Fluid viscosity ML�1T�1

Ei Modulus of elasticity of solid material i ML�1T�2

ni Poisson’s ratio of solid material i M0L0T0

H Height of tube/matrix cell L

W Width of tube/matrix cell L

lj Length j of the tube/matrix cell cross-section (not including H and W) L

LT Half-length of embedded tubes L

A Amplitude of sinusoidal displacement L

o Driving frequency T�1

t Time T
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and a relationship resulting from the non-dimensionalization of the velocity is
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The chosen independent variables have important physical interpretations. For example, the first
independent variable (riHWo2/Ei) is directly proportional to the product of the density of solid material i

with the cross-sectional area of the tube/matrix cell and the square of the driving frequency. It is also inversely
proportional to the modulus of elasticity of solid material i. This number is like mass per area multiplied by
acceleration and divided by stiffness. From these observations, it is reasonable to interpret this parameter as a
measure of the ratio of inertial forces in solid material i to elastic forces in solid material i. As the parameter
approaches zero the solid deformation approaches a quasi-static state.

The second variable (rfAoH/m) is readily recognizable to those familiar with fluid mechanics as a Reynolds
number and is a measure of the ratio of convective inertial forces to viscous forces in the fluid. It is expected
that for the application at hand this number should remain very small due to large fluid dynamic viscosity
and very small tube/matrix cell size. Because of this, the fluid flow is expected to be limited to the creeping
flow regime.

The third variable (Ei/(om)) is proportional to the modulus of elasticity of solid material i and inversely
proportional to the product of the driving frequency and fluid dynamic viscosity. It is interpreted as a measure
of the ratio of elastic forces in solid material i to viscous forces in the fluid. A parallel to this number is seen
when a linear, parallel spring-dashpot assembly is used to form a complex stiffness that represents a linearly
viscoelastic material. In that type of model the imaginary part of the complex stiffness is given by the product
of the driving frequency (odr) and the damping coefficient (c). A dimensionless parameter that develops,
known as the loss factor (Z), is the ratio of the imaginary part of the complex stiffness to the real part of the
complex stiffness and is given by Z ¼ odrc/k where k is the spring stiffness [3]. The larger the loss factor the
more dissipative the response. It is apparent that Ei/(om) is similar in form and meaning to 1/Z ¼ k/(odrc).
Therefore it is reasonable to expect the size this ratio to directly affect the damping performance of a machine-
augmented material.

In order to obtain the single-cycle efficiency (S), all independent variables in Eqs. (1) and (2) except ot are
first frozen. Then, the change in each of these equations due to an increase of the variable ot by an increment
of 2p is determined. The requirement on the lower bound of the ot interval is that it is sufficiently large to
ensure that a steady-state response has been reached. Finally, the change in the energy dissipated during the ot

interval is divided by the change in the energy input during the ot interval. The resulting relationship is not a
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function of ot since Eqs. (1) and (2) were evaluated at specific values of this variable in order to obtain the
result. This procedure yields the single-cycle efficiency S that is given by this equation:
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Under conditions of creeping flow and quasi-static solid deformation the combination of material
properties, loading, and geometry is such that all inertial forces are negligible and the first two independent
variables in Eqs. (1)–(5) are very small. Here it is further assumed that a machine-augmented composite that
operates so that these variables are approximately zero is not sensitive to small changes in these variables
about zero. When the first two independent variables in Eq. (5) are set to zero, the resulting relationship is this
equation:
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The expression for P/(om) for the case of creeping flow and quasi-static solid deformation is produced in the
same manner. The resulting expression is shown by this equation:
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and similarly the expression for V/(oLT) for these conditions is shown by this equation:
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Notice that when all of the original independent variables shown in Table 1 are held constant except for o
and m, Eq. (6) yields the same value of S for any number of systems if the product om is the same for those
systems. This observation can be very useful. If an optimum value of om is determined (theoretically or
experimentally) for a fixed machine-augmented lamina solid constituent property set, fixed machine-
augmented lamina geometry, and fixed displacement amplitude, then the optimum fluid dynamic viscosity is
determinable for any driving frequency. This is because with all these variables fixed Eq. (6) reduces to a
function of only one variable, om. Of course the correctness of this observation rests on the validity of the
assumptions made up to this point.

Obviously Eqs. (6)–(8) have a limited range of application because of the assumptions made about the
relative importance of inertia. For example, if the driving frequency is large and the fluid dynamic viscosity is
very small the assumptions that were made become invalid as the inertial forces become important and
possibly even dominate. However, for viscous fluid flowing through very small passages the assumptions are
reasonable. Nevertheless, the validity of these assumptions must be checked as applied to a machine-
augmented composite tube/matrix cell. The effectiveness of Eqs. (6)–(8) in predicting conditions of similarity is
evaluated through computational experiments in the following sections.
3. Time accurate, three-dimensional analysis of a tube/matrix cell

In this section a tube/matrix cell of a machine-augmented composite material is studied by using the finite
element method to solve the time accurate, three-dimensional Navier–Stokes equations and the time accurate,
three-dimensional equations of elasticity with large deformations. This is worthwhile because no assumptions
are introduced other than those associated with choosing the appropriate constitutive models. The analysis
was accomplished by using ANSYS 6.1 finite element software. Tri-linear, Lagrangian formulation, pure-
displacement finite elements represented the tube and matrix. Arbitrary Lagrangian–Eulerian mixed velocity-
pressure finite elements represented the fluid flow. These fluid elements are tri-linear in velocity and constant
in pressure. The finite element models were used to determine the validity of the scaling rules developed in
the previous section and to determine the effect on single-cycle efficiency of changing loading and fluid
dynamic viscosity.
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3.1. Governing differential equations for solid and fluid domains and their coupling

The equations governing the deformation of the solid constituents are given by the Lagrangian description
of mass conservation and linear momentum conservation. The mass conservation equation is rJ ¼ r0, where r
is the material density in the deformed configuration, J is the material Jacobean which is the determinant of
the deformation gradient (F). The deformation gradient is defined as F ¼ ðrXðxÞÞ

T where x is the spatial
coordinate and X is the material coordinate. The symbol r0 represents the material density in the undeformed
configuration.

The linear momentum conservation equations are r0q
2u=qt2 ¼ rX � ðS � F

TÞ þ r0f and are defined in the
undeformed configuration (O0s) of the solid domain. Here u is a vector valued function of displacements in
terms of X and t, S is the second Piola–Kirchhoff stress tensor defined as a function of X and t, and f is a
vector valued function of body forces in terms of X and t.

In order to relate the stress S to the displacements u, a constitutive relationship is needed. Fore example, the
Saint Venant–Kirchhoff constitutive model can be used to represent the tube material of a machine-
augmented tube/matrix cell. This is a linear material model. The constitutive relationship for this material
model is S ¼ C : E where E is the Green–Lagrange strain tensor, and it is defined as E ¼ ððrXuÞ þ ðrXuÞ

T
þ

ðrXuÞ � ðrXuÞ
T
Þ=2 [4]. Here C is the fourth-order elasticity tensor and for an isotropic material it contains only

two independent moduli such as the modulus of elasticity and Poisson’s ratio.
The Neo-Hookean constitutive model can be used to represent the matrix material of a machine-augmented

tube/matrix cell. This is a nonlinear hyperelastic material model that is adequate for predicting the
deformation of elastomers for principle stretches up to about 140% [5]. The Neo-Hookean constitutive
equation may be formed by replacing the aforementioned linear elasticity tensor by a nonlinear elasticity
tensor with components defined by Cijkl ¼ l0cij

�1 ckl
�1+(G0�l0 ln(J))(cik

�1cjl
�1+cil

�1ckj
�1) where c is the right

Cauchy–Green deformation tensor whose components are given by cij ¼ Fik
TFkj [4]. The symbol l0 represents

the Lame’s constant of the material in the undeformed configuration, and G0 represents the shear modulus of
the material in the undeformed configuration.

The fluid is assumed to be incompressible and of the Newtonian type. The equations governing the flow of
an incompressible Newtonian fluid in a moving, deforming domain are given by the updated arbitrary
Lagrangian–Eulerian description of mass conservation and linear momentum conservation. The mass
conservation equation for the incompressible case is rx � v ¼ 0. The linear momentum conservation equations
resulting from this description are rðqv=qtþ c � rxvÞ ¼ rx � ðmððrxvÞ þ ðrxvÞ

T
Þ � pIÞ þ rf in the deforming

fluid domain (Of) inside the tube/matrix cell [6]. Here r is the fluid density, m is the fluid dynamic viscosity, p is
the hydrostatic pressure in the fluid, c is a vector valued function of fluid convective velocities through the
domain Of, and f a vector valued function of body forces.

The fluid and solid domains are coupled by their common interfaces, i.e. a motion of the solid interface
causes motion of the fluid interface. When the no-slip boundary condition is assumed, continuity of both
normal and tangential velocity components is enforced across the interface (GS

T
F). This interface is the

intersection of the current solid domain boundary and the current fluid domain boundary. This is expressed as
vSolid ¼ vFluid on GS

T
F. Also, the traction vector acting on the fluid side of the fluid–solid interface is balanced

by an equal but opposite traction vector acting on the solid side of the fluid–solid interface. This is expressed
as tS þ tF ¼ 0 or in terms of the Cauchy stress tensor (r) as nSrS þ nFrF ¼ 0 on GS

T
F; where n

S and nF are the
unit outward normal vectors to the current configuration of the solid and fluid interfaces, respectively.

3.2. Computational domain and boundary condition descriptions

The tube/matrix cell cross-sectional geometry shown in Fig. 1 applies to all analyses. The tube volume
fraction is 0.243 and the fluid volume fraction is 0.075. The hydraulic diameter of the undeformed tube cavity
is 0.1489mm. The center of the tube resides at the origin of a Cartesian coordinate system. Cross-section cuts
lie on planes parallel to the x–y plane and the cross-sectional geometry is extruded along the z-axis.

In order to take advantage of all available symmetry, only the top right quarter of the cross-section was
meshed. Normal displacements and velocities were set to zero along the symmetry planes that are formed by
cuts made by the planes x ¼ 0 and y ¼ 0. The total tube/matrix cell length studied is 20mm. A sinusoidal
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Fig. 1. Cross-sectional view of a tube/matrix cell, dimensions in millimeters.
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function of time moves the top surface of the model uniformly; this function varies in amplitude and frequency
in different analyses. The form of the y-displacement function is v ¼ A=2ð1� cos ðotÞÞ. If the tube is loaded
symmetrically about the plane z ¼ 0, the solution will be symmetric about this plane as well because the tube/
matrix cell geometry and material properties are symmetric about this plane. Since the top surface
displacement is uniform, it is symmetric about the plane z ¼ 0. This symmetry condition was used in the finite
element analysis, and only the 10mm of the length in the positive z-direction from the x–y plane was meshed.
As a result, normal (z-direction) displacements and velocities were set to zero on the plane z ¼ 0.

The tube/matrix cell was assumed to be only one in a large array of repeated cells. Therefore, the outer face
of the tube/matrix cell, which lies parallel to the y–z plane, is also a symmetry plane, and the x-displacements
were set to zero on this surface. No-slip boundary conditions were used where the fluid contacts the interior to
the tube. The exit of the tube/matrix cell has a z-position of 10mm. At this location a zero pressure boundary
condition was applied to the fluid elements, and the z-displacements of both the fluid mesh and the solid mesh
were set to zero. The fluid velocity at the tube exit was not specified.

3.3. Material properties

The tube model is an isotropic linear material material. Unless otherwise stated, the modulus of elasticity of
the tube material is 2000MPa, its Poisson’s ratio is 0.35, and its density is 1100 kg/m3. These properties are
consistent with thermoplastics such as Nylon 6/6 [7]. The matrix material model is a nearly incompressible
Neo-Hookean material. Unless otherwise stated, the shear modulus of the matrix is 10MPa, its Poisson’s ratio
is 0.4995, and its density is 1100 kg/m3. These properties are consistent with some urethane elastomers. The
matrix’s Poisson’s ratio was chosen so that the ratio of the matrix bulk modulus to matrix shear modulus is
approximately 103. The appropriate range of this ratio for a nearly incompressible material is 103–104 [8]. The
fluid model is an incompressible Newtonian fluid. The fluid density is 970 kg/m3, and the fluid viscosity is
varied. The millimeter was the length unit used in the computations. Therefore, elastic moduli were entered in
N/mm2 (MPa), viscosities were entered in N s/mm2 (MPa s), and densities were entered in Mg/mm3. This
results in linear momentum conservation equations with units of N/mm3.

3.4. Solution method and process

Performing a fluid–structure interaction analysis consists of five main steps:
1.
 Build fluid and solid finite element models, and apply boundary conditions.

2.
 Flag the fluid–solid interfaces.



ARTICLE IN PRESS
D.M. McCutcheon et al. / Journal of Sound and Vibration 294 (2006) 828–840834
3.
 Specify fluid–structure interaction analysis options, such as which domain is solved first.

4.
 Obtain solution.

5.
 Post-process fluid and solid results. This must be done separately in ANSYS. A separate output file is

produced for each domain.
ANSYS 6.1 and higher versions have a specialized fluid–structure interaction solver. A mesh partitioning
technique is used, and the solid and fluid domains are solved separately. A Picard iterative method is used to
find equilibrium between the two domains. The ANSYS fluid–structure interaction solver allows the solid and
the fluid domains to have dissimilar meshes. This means that direct connectivity is not enforced across the
fluid–solid interfaces.

Fig. 2 is a flow chart of the solution process. This type of procedure is common when mesh-partitioning
techniques are employed [9]. Because the fluid and solid meshes are not connected directly, a search procedure
locates nodes on the fluid–solid interface. Nodal values from one domain boundary are then distributed onto
the appropriate nodes across the interface. The fluid forces, solid displacements, and solid velocities are
transferred across the interface. The algorithm iterates between the solid and fluid analyses until convergence
is reached for each time step or the user-specified maximum number of stagger iterations is reached.
Convergence is based on the quantities transferred across the interface.

The fluid mesh deforms based on the solid domain deformation, or the fluid mesh deformation can be
prescribed directly through fluid element displacement degrees of freedom. When the entire fluid mesh motion
is not directly prescribed, a pseudo-elasticity-based morphing system deforms the fluid mesh based on solid
deformation at the fluid–solid interface and those displacements that are directly specified in the fluid mesh.
Xu and Accorsi [10] describe a similar method and several other fluid mesh update procedures for
fluid–structure interaction analysis. Note the fluid element displacement degrees of freedom represent the
displacements of nodes in the fluid mesh, not necessarily the displacements of fluid particles. The fluid velocity
degrees of freedom at a given node are not directly affected by the specification of displacement degrees of
freedom at that node. The fluid may still flow through the mesh at a particular node unless the mesh velocity
and the fluid velocity are specified to be the same at that node, making the convective velocity zero at that
location. Unconditionally stable, implicit finite difference methods provide the temporal descretization.
No

Yes 

Is current time
equal to final 

time? 

No 

Yes 

Are the solid and 
fluid converged or 
has the maximum
number of stagger 

iterations been 
reached? 

ANSYS solid analysis, results 
interpolation, and results transfer.

Fluid mesh is updated. 

ANSYS-FLOTRAN fluid analysis, 
results interpolation, and results transfer. 

Start program. Increment time. Begin stagger loop between solid and fluid. 

End program. 

End stagger loop.

Fig. 2. Flowchart of fluid–structure interaction solution process.
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3.5. Numerical results

The mesh used for this study contained 19,688 solid elements, of which 7268 represented the tube material.
In addition the mesh contained 6912 fluid elements. ANSYS sets a default convergence tolerance of 1� 10�4

for fluid/solid interaction analysis. A convergence study showed that this was insufficient to assure
convergence of the solution to within 1%; the study results showed that a tolerance of 2.5� 10�5 was more
than sufficient for this level of convergence. The maximum number of stagger iterations between the solid and
fluid analyses was set to a sufficiently large number to ensure convergence for each time step. Thirty-six time
steps were used for all analyses. In order to help lower execution time, reduced integration was used for
elements representing the matrix material. The models were executed for one and one half cycles.

Average stress values were calculated by summing y-direction reaction forces on the top surface of the tube/
matrix cell model and dividing the sum by the top surface area. These values were then plotted against ot and
engineering strain. The latter plotting produced a stress–strain curve with a hysteresis loop for each model.
Fig. 3 is an example of a plot of the magnitude of normalized average stress and magnitude of the normalized
engineering strain as functions of ot. The transient of the solution appeared to have dissipated after the first
quarter cycle. Notice from Fig. 3 that the same stress curve observed between p/2 and p rad reappears between
5p/2 and 3p rad, indicating a steady-state periodic response since these intervals differ by 2p rad. Therefore,
the data for the first half cycle were not used; only the data from the last full cycle were kept for the purpose of
calculating single-cycle efficiency. It is clear after viewing the figure that the stress is not a simple sinusoid since
it does not lag the sinusoidal strain by a constant phase angle (d). Therefore, there is not a constant tan d for
the machine-augmented composite lamina. This implies that the mechanical response is not linearly
viscoelastic. It should be noted that this observation was found to hold true even for the lowest values of A/H

used in this study.
Fig. 4 is an example of a plot of average stress versus engineering strain through one steady-state cycle. The

figure clearly depicts a hysteresis loop, but the loop lacks the elliptic shape that is characteristic of a linearly
viscoelastic response. It is also observed from Fig. 4 that the tube/matrix cell is more dissipative while being
unloaded than while being compressed. This can be seen by noting that the stress–strain curve (Fig. 4) should
be followed in a clock-wise manner and that a bulge occurs during the unloading phase. While the tube/matrix
cell is being compressed the stress–strain plot has less curvature.

3.5.1. Numerical test of dimensional analysis predictions

The first test performed was carried out in order to determine the validity of Eq. (6) as applied to machine-
augmented materials. A set of values for om was chosen and the machine-augmented composite efficiencies at
these values of om for driving frequencies of 20, 100, and 200p rad/s were determined from finite element
models. The loading was a 0–0.025 through-the-thickness engineering strain that was a sinusoidal function of
time and applied at the aforementioned frequencies. This corresponds to an A/H of �0.0125.
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Fig. 5. Single-cycle efficiency versus om for driving frequencies of: } 20p; J 100p; and n 200p rad/s.
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Fig. 4. Average stress versus engineering strain for o ¼ 20p rad=s, m ¼ 4:5Pa s, and A ¼ �0:025mm.
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The single-cycle efficiency for each model was determined by numerically integrating the average top surface
stress as a function of engineering strain through a steady-state cycle using the trapezoidal rule. The energy
inside each hysteresis loop was divided by the total energy input by boundary work in the cycle. The numerical
results appear in Fig. 5. Eq. (6) predicts that a single curve should apply for all three frequencies since om was
varied in the same way for each of these frequencies. As can be seen, the curves depicted in Fig. 5 are a very
close match. Small differences in the solution were expected due to error introduced by the sequence of
numerical methods used to obtain the approximate solutions. This agreement supports the validity of Eq. (6)
for the application considered.

For this set of analyses the minimum value of the Reynolds number (rfAoH/m) is approximately 3e�4 and
the maximum value is approximately 3e�1. Labeling the matrix material as Material-1 and the tube material
as Material-2, the maximum value of the parameter r1HWo2=E1 is approximately 3e�5. The maximum value
of r2HWo2=E2 is approximately 4e�7. Recall that in the development of Eq. (6) these dimensionless
parameters are assumed to be approximately zero. It was also assumed that small changes in these parameters
are not important as long as the values of these variables remain small. We see that indeed these variables are
very small with the exception of the highest Reynolds number; even this value is less than 1. However, their
values do change by several orders of magnitude between analyses. The good agreement of the curves supports
the validity of not considering these parameters in the dimensional analysis of machine-augmented composite
lamina. The agreement also supports the assumption that the changes in these parameters are not important as
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long as the value of the parameters remain small since changes of three orders of magnitude seem to cause no
ill effects in predicting similarity.

As a second test, two analyses were conducted with the same geometry, loading, E1=ðomÞ, and E2=ðomÞ
values. According to Eqs. (7) and (8) the two analyses should yield the same P=ðomÞ and V=ðoLT Þ curves as
functions ot. The geometry is the same as that discussed previously. The A/H value for the two analyses is
�0.01 and the driving frequency is 100p rad/s. For simplicity of identification, these analyses are referred to as
Analysis-1 and Analysis-2. The modulus of elasticity of the tube material is 2000MPa for Analysis-1 and
1500MPa for Analysis-2. The shear modulus of the matrix material is 10MPa for Analysis-1 and 7.5MPa for
Analysis-2. The fluid dynamic viscosity is 1 Pa s for Analysis-1 and 0.75 Pa s for Analysis-2. For both Analysis-
1 and Analysis-2 the density of the tube material and matrix material is 1100 kg/m3, and the fluid density is
970 kg/m3. The Poisson’s ratio is 0.35 for the tube material and 0.4995 for the matrix material in both analyses.

Fig. 6 is a plot of P/(om) obtained from Analysis-1 and Analysis-2 versus ot. The values occur at the center
of the tube where the pressure magnitude is largest. The ratio of the root-mean-square difference between the
curves to the l2-norm of the average of the two curves is 0.011. As predicted by Eq. (7), the results of the two
analyses match closely.

Fig. 7 is a plot of V/(oLT) obtained from Analysis-1 and Analysis-2 versus ot. The values occur at the
location of maximum fluid velocity magnitude at the tube exit. This location is at the point farthest from the
tube walls within the fluid cavity. The results depicted by this figure also match closely as predicted by Eq. (8).
The ratio of the root-mean-square of the difference between the curves to the l2-norm of the average of the two
curves is 0.006. Since oLT for Analysis 1 and Analysis 2 are the same, the value of V should match for the two
analyses. The maximum average velocity at the tube exit during a cycle for Analysis-1 and Analysis-2 is 391.45
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Fig. 7. V/(oLT) versus ot for results of: } Analysis-1 and J Analysis-2.
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and 391.22mm/s, respectively. The percent difference with respect to the average of two values is 0.06%.
Again there is a very close match.

Data obtained from the fluid pressure do not agree as well between the two analyses as the data obtained
from the velocity field. This is not surprising since the pressure is only found as a constant on each finite
element, while the velocity components are tri-linear on each finite element and constitute primary variables in
the finite element formulation. The previously discussed results support the validity of the scaling rules
developed for the problems considered. Namely, the results support the assumption that inertial effects are
negligible for the machine-augmented lamina considered, and that adequate scaling rules and dimensionless
variable sets may be developed without considering densities.

3.5.2. Effect of changing loading amplitude, driving frequency, and fluid dynamic viscosity on single-cycle

efficiency

A series of numerical experiments was carried out in order to determine the effect of changing displacement
amplitude, driving frequency, and fluid dynamic viscosity while holding geometry and other material
properties constant. Based on the dimensional analysis results, the study was conducted to determine the
single-cycle efficiency of the previously described machine-augmented lamina as a function of variables A/H
and om instead of A, o, and m separately.

Six values of A/H were chosen that range from �0.0025 to �0.0150 in increments of �0.0025. Notice that
the magnitude of A/H is the through-the-thickness engineering strain amplitude. The engineering strain varied
as a sinusoidal function of time between 0 and 2(A/H) at a frequency of 100p rad/s. Twenty values of om were
chosen. The values range from 10p to 200pPa in increments of 10pPa. The previously described finite element
mesh and solution options apply. The efficiency was calculated by the same procedure discussed earlier. The
numerical results appear in Fig. 8.

From the figure the single-cycle efficiency is observed to increase as the A/H magnitude is increased with om
held constant. The data sets for the three highest magnitudes of A/H do not cover a very large range of om
because of model failure. For these models the tube sidewalls at the exit came into contact and collapsed the
fluid elements inside the cavity, thereby causing element failure. During the compression phase of the
sinusoidal loading, the high pressure generated at the tube center causes the inward deflection of the sidewalls
at this location to be much less than at the tube exit where the pressure is zero. For example, consider the
situation with A/H of �0.015 and om of 70pPa. The maximum magnitude of sidewall x-displacement at the
middle of the physical tube length is 0.014mm inward, while the value at the exit of the tube is 0.042mm
inward. These values occur at the inner surface halfway up the sidewalls of the physical tube. When the tube is
undeformed, the x-distance from the centerline of the tube to both locations is 0.05mm. The percent closure at
the middle of the tube length and at the exit of the tube are 27.98% and 84.80%, respectively. Therefore, the
closure at the tube exit is approximately three times as large as the value at the middle of the tube length. This
0

0.5

1

0 314 628

ω·µ (Pa)

E
ff

ic
ie

nc
y

Fig. 8. Single-cycle efficiency versus om for A/H of: } �0.0025; J �0.0050; n �0.0075; � �0.0100; �0.0125; and — �0.0150.
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result shows the three-dimensional nature of the problem considered. Also, at that time there is only a
0.008mm x-distance between the centerline of the tube and the sidewall at the tube exit. This means that the
fluid elements in this area are very compressed.

Only one quarter of the cross-section of the tube/matrix cell was meshed. Therefore, the tube sidewall may
pass through the fluid mesh, causing the fluid elements in this area to have zero or negative volume. At this
point these fluid elements fail. This is a failure of the numerical methods used to obtain an approximate
solution. When a solution was attempted with om of 80pPa, the gap completely closed and the tube sidewall
passed through the fluid mesh, causing element failure.

In addition, the efficiency initially increases with increasing om and A/H held constant. For models with
A/H magnitudes less than 0.01 sidewall contact does not occur. A local maximum with respect to om appears
for each of these cases. The om value at which these local maxima occur increases as the A/H magnitude
decreases, although the peak values themselves are very similar. It is reasonable that the single-cycle efficiency
is bounded. It must be between zero and one; obtaining a result outside these bounds would violate the
principle of conservation of energy. Once the efficiency decreased for a given A/H due to an increase in om, no
more solutions were attempted.

It should be noted that several wiggles appear in the curve for the smallest A/H magnitude (0.0025). It is
believed that this is a result of using the same convergence tolerance for all A/H values. The fluid force
magnitudes become smaller as the magnitude of A/H is reduced. Therefore, since the same convergence
tolerance applied for all A/H conditions analyzed, the results for the smallest A/H magnitudes is somewhat
less tightly converged than the results for the larger A/H magnitudes. Ideally, the convergence tolerance
should be reduced as the magnitudes of the quantities transferred across the fluid–solid interface decrease in
order to maintain the same percent level of accuracy. That was not done in this analysis for two reasons. First,
the trend of the system response is consistent; as A/H becomes small, values of om must increase to efficiently
damp vibration. Finally, as A/H approaches zero, the displacements become too small to be of concern with
regard to structural performance and durability of the structure.

The highest single-cycle efficiency obtained from any analysis is 0.808. This value occurs for an A/H of
�0.0025 and a om of 190pPa. This means that the machine-augmented composite dissipates approximately
80% of the energy put into the tube/matrix cell by boundary work. This result (0.8) is a very encouraging when
considering that a material that does not store energy, such as a viscous fluid, will yield a single-cycle efficiency
of 1.0. In addition since maxima were located, if only the driving frequency is changed, the fluid viscosity may
be changed by some means and optimum performance acquired or retained.
4. Conclusions

Dimensional analysis identifies the ratio of solid elastic moduli to the product of driving frequency and fluid
dynamic viscosity (Ei/(om)) as an important parameter that influences the damping performance of a machine
augmented material. The results of the numerical tests indicate that the dimensional analysis results with
inertial effects neglected are effective in predicting conditions of similarity for the problems considered.
Numerical tests also show that increasing A/H magnitude, with all other variables held constant, can result in
an increase in the single-cycle efficiency of a machine-augmented material lamina. In addition, increasing om
with all other variables held constant can favorably affect the single-cycle efficiency of an augmented lamina.
In some cases a local maximum is observed with respect to om. Even though the single-cycle efficiency
decreases for the next increase in om past a local maximum, there is no guarantee that this trend continues.
The results obtained for the single-cycle efficiency are encouraging; they indicate that machine augmentation
might create highly dissipative composite materials. The finite element analysis shows that a augmented
lamina is capable of damping approximately 80% of the energy input when the appropriate combination of
loading and fluid viscosity are present for the geometry and solid material properties considered.

The solid material constitutive models used in this study are not dissipative. Many polymers themselves are
highly dissipative and exhibit viscoelastic behavior. Due to this, the results obtained using these mechanical
energy conserving material models may display behavior that is less dissipative than the actual physical system
would exhibit in reality. Because of this, the energy dissipation efficiencies calculated in this study may be
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underestimates, but this is hard to predict without carrying out experiments or analysis due to the nonlinearity
of the equations involved and the fact that a ratio of energies is the quantity of interest.

The geometry, the volume fractions, and the tube moduli to matrix moduli ratio used for the analyses are
not necessarily the optimum combinations. Further work is needed to attempt to maintain or improve the
damping performance while increasing stiffness. Since high single-cycle efficiency values are obtained with
small strain amplitudes, it may be possible to use stiffer solid constituents in conjunction with a more viscous
fluid in order to obtain equivalent damping performance along with higher stiffness.
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